博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
《Pandas Cookbook》第06章 索引对齐
阅读量:7043 次
发布时间:2019-06-28

本文共 25419 字,大约阅读时间需要 84 分钟。


第06章 索引对齐
第09章 合并Pandas对象
第10章 时间序列分析
第11章 用Matplotlib、Pandas、Seaborn进行可视化


In[1]: import pandas as pd        import numpy as np

1. 检查索引

# 读取college数据集,提取所有的列 In[2]: college = pd.read_csv('data/college.csv')        columns = college.columns        columnsOut[2]: Index(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL',                'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS', 'UGDS_WHITE',                'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN', 'UGDS_NHPI',                'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF', 'CURROPER', 'PCTPELL',                'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP'], dtype='object')
# 用values属性,访问底层的NumPy数组 In[3]: columns.valuesOut[3]: array(['INSTNM', 'CITY', 'STABBR', 'HBCU', 'MENONLY', 'WOMENONLY',                'RELAFFIL', 'SATVRMID', 'SATMTMID', 'DISTANCEONLY', 'UGDS',                'UGDS_WHITE', 'UGDS_BLACK', 'UGDS_HISP', 'UGDS_ASIAN', 'UGDS_AIAN',                'UGDS_NHPI', 'UGDS_2MOR', 'UGDS_NRA', 'UGDS_UNKN', 'PPTUG_EF',                'CURROPER', 'PCTPELL', 'PCTFLOAN', 'UG25ABV', 'MD_EARN_WNE_P10',                'GRAD_DEBT_MDN_SUPP'], dtype=object)
# 取出该数组的第6个值 In[4]: columns[5]Out[4]: 'WOMENONLY'
# 取出该数组的第2\9\11 In[5]: columns[[1,8,10]]Out[5]: Index(['CITY', 'SATMTMID', 'UGDS'], dtype='object')
# 逆序切片选取 In[6]: columns[-7:-4]Out[6]: Index(['PPTUG_EF', 'CURROPER', 'PCTPELL'], dtype='object')
# 索引有许多和Series和DataFrame相同的方法 In[7]: columns.min(), columns.max(), columns.isnull().sum()Out[7]: ('CITY', 'WOMENONLY', 0)
# 索引对象可以直接通过字符串方法修改 In[8]: columns + '_A'Out[8]: Index(['INSTNM_A', 'CITY_A', 'STABBR_A', 'HBCU_A', 'MENONLY_A', 'WOMENONLY_A',               'RELAFFIL_A', 'SATVRMID_A', 'SATMTMID_A', 'DISTANCEONLY_A', 'UGDS_A',               'UGDS_WHITE_A', 'UGDS_BLACK_A', 'UGDS_HISP_A', 'UGDS_ASIAN_A',               'UGDS_AIAN_A', 'UGDS_NHPI_A', 'UGDS_2MOR_A', 'UGDS_NRA_A',               'UGDS_UNKN_A', 'PPTUG_EF_A', 'CURROPER_A', 'PCTPELL_A', 'PCTFLOAN_A',               'UG25ABV_A', 'MD_EARN_WNE_P10_A', 'GRAD_DEBT_MDN_SUPP_A'],               dtype='object')
# 索引对象也可以通过比较运算符,得到布尔索引 In[9]: columns > 'G'Out[9]: array([ True, False,  True,  True,  True,  True,  True,  True,  True,                False,  True,  True,  True,  True,  True,  True,  True,  True,                True,  True,  True, False,  True,  True,  True,  True,  True], dtype=bool)
# 尝试用赋值的方法,修改索引对象的一个值,会导致类型错误,因为索引对象是不可变类型 In[10]: columns[1] = 'city'---------------------------------------------------------------------------TypeError                                 Traceback (most recent call last)
in
()----> 1 columns[1] = 'city'/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in __setitem__(self, key, value) 1668 1669 def __setitem__(self, key, value):-> 1670 raise TypeError("Index does not support mutable operations") 1671 1672 def __getitem__(self, key):TypeError: Index does not support mutable operations

更多

索引对象支持集合运算:联合、交叉、求差、对称差

# 切片 In[11]: c1 = columns[:4]         c1Out[11]: Index(['INSTNM', 'CITY', 'STABBR', 'HBCU'], dtype='object') In[12]: c2 = columns[2:5]         c2Out[12]: Index(['STABBR', 'HBCU', 'MENONLY'], dtype='object')
# 联合 In[13]: c1.union(c2)Out[13]: Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'STABBR'], dtype='object') In[14]: c1 | c2Out[14]: Index(['CITY', 'HBCU', 'INSTNM', 'MENONLY', 'STABBR'], dtype='object')
# 对称差 In[15]: c1.symmetric_difference(c2)Out[15]: Index(['CITY', 'INSTNM', 'MENONLY'], dtype='object') In[16]: c1 ^ c2Out[16]: Index(['CITY', 'INSTNM', 'MENONLY'], dtype='object')

2. 求笛卡尔积

# 创建两个有不同索引、但包含一些相同值的Series In[17]: s1 = pd.Series(index=list('aaab'), data=np.arange(4))         s1Out[17]: a    0         a    1         a    2         b    3         dtype: int64 In[18]: s2 = pd.Series(index=list('cababb'), data=np.arange(6))         s2Out[18]: c    0         a    1         b    2         a    3         b    4         b    5         dtype: int64
# 二者相加,以产生一个笛卡尔积 In[19]: s1 + s2Out[19]: a    1.0         a    3.0         a    2.0         a    4.0         a    3.0         a    5.0         b    5.0         b    7.0         b    8.0         c    NaN         dtype: float64

更多

# 当两组索引元素完全相同、顺序也相同时,不会生成笛卡尔积;索引会按照它们的位置对齐。下面的例子,两个Series完全相同,结果也是整数 In[20]: s1 = pd.Series(index=list('aaabb'), data=np.arange(5))         s2 = pd.Series(index=list('aaabb'), data=np.arange(5))         s1 + s2Out[20]: a    0         a    2         a    4         b    6         b    8         dtype: int64
# 如果索引元素相同,但顺序不同,是能产生笛卡尔积的 In[21]: s1 = pd.Series(index=list('aaabb'), data=np.arange(5))         s2 = pd.Series(index=list('bbaaa'), data=np.arange(5))         s1 + s2Out[21]: a    2         a    3         a    4         a    3         a    4         a    5         a    4         a    5         a    6         b    3         b    4         b    4         b    5         dtype: int64

3. 索引爆炸

# 读取employee数据集,设定行索引是RACE In[22]: employee = pd.read_csv('data/employee.csv', index_col='RACE')         employee.head()Out[22]:
img_48b48592c29039a0becda96b95056c23.png
# 选取BASE_SALARY做成两个Series,判断二者是否相同 In[23]: salary1 = employee['BASE_SALARY']         salary2 = employee['BASE_SALARY']         salary1 is salary2Out[23]: True
# 结果是True,表明二者指向的同一个对象。这意味着,如果修改一个,另一个也会去改变。为了收到一个全新的数据,使用copy方法: In[24]: salary1 = employee['BASE_SALARY'].copy()         salary2 = employee['BASE_SALARY'].copy()         salary1 is salary2Out[24]: False
# 对其中一个做索引排序,比较二者是否不同 In[25]: salary1 = salary1.sort_index()         salary1.head()Out[25]: RACE         American Indian or Alaskan Native    78355.0         American Indian or Alaskan Native    26125.0         American Indian or Alaskan Native    98536.0         American Indian or Alaskan Native        NaN         American Indian or Alaskan Native    55461.0         Name: BASE_SALARY, dtype: float64 In[26]: salary2.head()Out[26]: RACE         Hispanic/Latino    121862.0         Hispanic/Latino     26125.0         White               45279.0         White               63166.0         White               56347.0         Name: BASE_SALARY, dtype: float64
# 将两个Series相加 In[27]: salary_add = salary1 + salary2 In[28]: salary_add.head()Out[28]: RACE         American Indian or Alaskan Native    138702.0         American Indian or Alaskan Native    156710.0         American Indian or Alaskan Native    176891.0         American Indian or Alaskan Native    159594.0         American Indian or Alaskan Native    127734.0         Name: BASE_SALARY, dtype: float64
# 再将salary1与其自身相加;查看几个所得结果的长度,可以看到长度从2000到达了117万 In[29]: salary_add1 = salary1 + salary1         len(salary1), len(salary2), len(salary_add), len(salary_add1)Out[29]: (2000, 2000, 1175424, 2000)

更多

# 验证salary_add值的个数。因为笛卡尔积是作用在相同索引元素上的,可以对其平方值求和 In[30]: index_vc = salary1.index.value_counts(dropna=False)         index_vcOut[30]: Black or African American            700         White                                665         Hispanic/Latino                      480         Asian/Pacific Islander               107         NaN                                   35         American Indian or Alaskan Native     11         Others                                 2         Name: RACE, dtype: int64 In[31]: index_vc.pow(2).sum()Out[31]: 1175424

4. 用不等索引填充数值

# 读取三个baseball数据集,行索引设为playerID In[32]: baseball_14 = pd.read_csv('data/baseball14.csv', index_col='playerID')         baseball_15 = pd.read_csv('data/baseball15.csv', index_col='playerID')         baseball_16 = pd.read_csv('data/baseball16.csv', index_col='playerID')         baseball_14.head()Out[32]:
img_aeae95e5f3903314a01972b140bc2662.png
# 用索引方法difference,找到哪些索引标签在baseball_14中,却不在baseball_15、baseball_16中 In[33]: baseball_14.index.difference(baseball_15.index)Out[33]: Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01', 'guzmaje01',                'hoeslj01', 'krausma01', 'preslal01', 'singljo02'],                dtype='object', name='playerID') In[34]: baseball_14.index.difference(baseball_16.index)Out[34]: Index(['congeha01', 'correca01', 'gattiev01', 'gomezca01',                'lowrije01', 'rasmuco01', 'tuckepr01', 'valbulu01'],                dtype='object', name='playerID')
# 找到每名球员在过去三个赛季的击球数,H列包含了这个数据 In[35]: hits_14 = baseball_14['H']         hits_15 = baseball_15['H']         hits_16 = baseball_16['H']         hits_14.head()Out[35]: Index(['corpoca01', 'dominma01', 'fowlede01', 'grossro01', 'guzmaje01',                'hoeslj01', 'krausma01', 'preslal01', 'singljo02'],         dtype='object', name='playerID')
# 将hits_14和hits_15两列相加 In[36]: (hits_14 + hits_15).head()Out[36]: playerID         altuvjo01    425.0         cartech02    193.0         castrja01    174.0         congeha01      NaN         corpoca01      NaN         Name: H, dtype: float64
# congeha01 和 corpoca01 在2015年是有记录的,但是结果缺失了。使用add方法和参数fill_value,避免产生缺失值 In[37]: hits_14.add(hits_15, fill_value=0).head()Out[37]: playerID         altuvjo01    425.0         cartech02    193.0         castrja01    174.0         congeha01     46.0         corpoca01     40.0         Name: H, dtype: float64
# 再将2016的数据也加上 In[38]: hits_total = hits_14.add(hits_15, fill_value=0).add(hits_16, fill_value=0)         hits_total.head()Out[38]: playerID         altuvjo01    641.0         bregmal01     53.0         cartech02    193.0         castrja01    243.0         congeha01     46.0         Name: H, dtype: float64
# 检查结果中是否有缺失值 In[39]: hits_total.hasnansOut[39]: False

原理

# 如果一个元素在两个Series都是缺失值,即便使用了fill_value,相加的结果也仍是缺失值 In[40]: s = pd.Series(index=['a', 'b', 'c', 'd'], data=[np.nan, 3, np.nan, 1])         sOut[40]: a    NaN         b    3.0         c    NaN         d    1.0         dtype: float64 In[41]: s1 = pd.Series(index=['a', 'b', 'c'], data=[np.nan, 6, 10])         s1Out[41]: a     NaN         b     6.0         c    10.0         dtype: float64 In[42]: s.add(s1, fill_value=5)Out[42]: a     NaN         b     9.0         c    15.0         d     6.0         dtype: float64 In[43]: s1.add(s, fill_value=5)Out[43]: a     NaN         b     9.0         c    15.0         d     6.0         dtype: float64

更多

# 从baseball_14中选取一些列 In[44]: df_14 = baseball_14[['G','AB', 'R', 'H']]         df_14.head()Out[44]:
img_0ac689682b6f7ecfc150f919eb48bcff.png
# 再从baseball_15中选取一些列,有相同的、也有不同的 In[45]: df_15 = baseball_15[['AB', 'R', 'H', 'HR']]         df_15.head()Out[45]:
img_617cd2b5dfbe6962aa757f448defa282.png
# 将二者相加的话,只要行或列不能对齐,就会产生缺失值。style属性的highlight_null方法可以高亮缺失值 In[46]: (df_14 + df_15).head(10).style.highlight_null('yellow')Out[46]:
img_6089b4d5e2325129d6215ebe1d5fa908.png
# 即便使用了fill_value=0,有些值也会是缺失值,这是因为一些行和列的组合根本不存在输入的数据中 In[47]: df_14.add(df_15, fill_value=0).head(10).style.highlight_null('yellow')Out[47]:
img_42f19ed77dd8fa74edecfef52796b6d8.png

5. 从不同的DataFrame追加列

# 读取employee数据,选取'DEPARTMENT', 'BASE_SALARY'这两列 In[48]: employee = pd.read_csv('data/employee.csv')         dept_sal = employee[['DEPARTMENT', 'BASE_SALARY']]# 在每个部门内,对BASE_SALARY进行排序 In[49]: dept_sal = dept_sal.sort_values(['DEPARTMENT', 'BASE_SALARY'],                                         ascending=[True, False])# 用drop_duplicates方法保留每个部门的第一行 In[50]: max_dept_sal = dept_sal.drop_duplicates(subset='DEPARTMENT')         max_dept_sal.head()Out[50]:
img_3d1b5df6f2ca3462a813ffa420626c43.png
# 使用DEPARTMENT作为行索引 In[51]: max_dept_sal = max_dept_sal.set_index('DEPARTMENT')         employee = employee.set_index('DEPARTMENT')# 现在行索引包含匹配值了,可以向employee的DataFrame新增一列 In[52]: employee['MAX_DEPT_SALARY'] = max_dept_sal['BASE_SALARY'] In[53]: pd.options.display.max_columns = 6Out[54]:
img_b1fb772824d63db85b1a5315593362bb.png
# 现在可以用query查看是否有BASE_SALARY大于MAX_DEPT_SALARY的 In[55]: employee.query('BASE_SALARY > MAX_DEPT_SALARY')Out[55]:
img_52779d790501ed29c2533aee7777dbef.png

原理

# 用random从dept_sal随机取10行,不做替换 In[56]: np.random.seed(1234)         random_salary = dept_sal.sample(n=10).set_index('DEPARTMENT')         random_salaryOut[56]:
img_a44ff4a412cb91a4b9b77918cc282ec9.png
# random_salary中是有重复索引的,employee DataFrame的标签要对应random_salary中的多个标签 In[57]: employee['RANDOM_SALARY'] = random_salary['BASE_SALARY']---------------------------------------------------------------------------ValueError                                Traceback (most recent call last)
in
()----> 1 employee['RANDOM_SALARY'] = random_salary['BASE_SALARY']/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in __setitem__(self, key, value) 2329 else: 2330 # set column-> 2331 self._set_item(key, value) 2332 2333 def _setitem_slice(self, key, value):/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in _set_item(self, key, value) 2395 2396 self._ensure_valid_index(value)-> 2397 value = self._sanitize_column(key, value) 2398 NDFrame._set_item(self, key, value) 2399 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in _sanitize_column(self, key, value, broadcast) 2545 2546 if isinstance(value, Series):-> 2547 value = reindexer(value) 2548 2549 elif isinstance(value, DataFrame):/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in reindexer(value) 2537 # duplicate axis 2538 if not value.index.is_unique:-> 2539 raise e 2540 2541 # other/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/frame.py in reindexer(value) 2532 # GH 4107 2533 try:-> 2534 value = value.reindex(self.index)._values 2535 except Exception as e: 2536 /Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/series.py in reindex(self, index, **kwargs) 2424 @Appender(generic._shared_docs['reindex'] % _shared_doc_kwargs) 2425 def reindex(self, index=None, **kwargs):-> 2426 return super(Series, self).reindex(index=index, **kwargs) 2427 2428 @Appender(generic._shared_docs['fillna'] % _shared_doc_kwargs)/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/generic.py in reindex(self, *args, **kwargs) 2513 # perform the reindex on the axes 2514 return self._reindex_axes(axes, level, limit, tolerance, method,-> 2515 fill_value, copy).__finalize__(self) 2516 2517 def _reindex_axes(self, axes, level, limit, tolerance, method, fill_value,/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/generic.py in _reindex_axes(self, axes, level, limit, tolerance, method, fill_value, copy) 2531 obj = obj._reindex_with_indexers({axis: [new_index, indexer]}, 2532 fill_value=fill_value,-> 2533 copy=copy, allow_dups=False) 2534 2535 return obj/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/generic.py in _reindex_with_indexers(self, reindexers, fill_value, copy, allow_dups) 2625 fill_value=fill_value, 2626 allow_dups=allow_dups,-> 2627 copy=copy) 2628 2629 if copy and new_data is self._data:/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/internals.py in reindex_indexer(self, new_axis, indexer, axis, fill_value, allow_dups, copy) 3884 # some axes don't allow reindexing with dups 3885 if not allow_dups:-> 3886 self.axes[axis]._can_reindex(indexer) 3887 3888 if axis >= self.ndim:/Users/Ted/anaconda/lib/python3.6/site-packages/pandas/core/indexes/base.py in _can_reindex(self, indexer) 2834 # trying to reindex on an axis with duplicates 2835 if not self.is_unique and len(indexer):-> 2836 raise ValueError("cannot reindex from a duplicate axis") 2837 2838 def reindex(self, target, method=None, level=None, limit=None,ValueError: cannot reindex from a duplicate axis

更多

# 选取max_dept_sal['BASE_SALARY']的前三行,赋值给employee['MAX_SALARY2'] In[58]: employee['MAX_SALARY2'] = max_dept_sal['BASE_SALARY'].head(3)# 对MAX_SALARY2统计 In[59]: employee.MAX_SALARY2.value_counts()Out[59]: 140416.0    29         100000.0    11         64251.0      5         Name: MAX_SALARY2, dtype: int64# 因为只填充了三个部门的值,所有其它部门在结果中都是缺失值 In[60]: employee.MAX_SALARY2.isnull().mean()Out[60]: 0.97750000000000004

6. 高亮每列的最大值

In[61]: pd.options.display.max_rows = 8# 读取college数据集,INSTNM作为列 In[62]: college = pd.read_csv('data/college.csv', index_col='INSTNM')         college.dtypesOut[62]: CITY                   object         STABBR                 object         HBCU                  float64         MENONLY               float64                                   ...            PCTFLOAN              float64         UG25ABV               float64         MD_EARN_WNE_P10        object         GRAD_DEBT_MDN_SUPP     object         Length: 26, dtype: object
# MD_EARN_WNE_P10 和 GRAD_DEBT_MDN_SUPP 两列是对象类型,对其进行检查,发现含有字符串 In[63]: college.MD_EARN_WNE_P10.iloc[0]Out[63]: '30300' In[64]: college.MD_EARN_WNE_P10.iloc[0]Out[64]: '30300'
# 降序检查 In[65]: college.MD_EARN_WNE_P10.sort_values(ascending=False).head()Out[65]: INSTNM         Sharon Regional Health System School of Nursing    PrivacySuppressed         Northcoast Medical Training Academy                PrivacySuppressed         Success Schools                                    PrivacySuppressed         Louisiana Culinary Institute                       PrivacySuppressed         Bais Medrash Toras Chesed                          PrivacySuppressed         Name: MD_EARN_WNE_P10, dtype: object
# 可以用to_numeric,将某列的值做强制转换 In[66]: cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']         for col in cols:             college[col] = pd.to_numeric(college[col], errors='coerce')         college.dtypes.loc[cols]Out[66]: MD_EARN_WNE_P10       float64         GRAD_DEBT_MDN_SUPP    float64         dtype: object
# 用select_dtypes方法过滤出数值列 In[67]: college_n = college.select_dtypes(include=[np.number])         college_n.head() Out[67]:
img_73da5c71d97c059e3b0a9b2d76408181.png
# 有的列只含有两个值,用nunique()方法挑出这些列 In[68]: criteria = college_n.nunique() == 2         criteria.head()Out[68]: HBCU          True         MENONLY       True         WOMENONLY     True         RELAFFIL      True         SATVRMID     False         dtype: bool
# 将布尔Series传给索引运算符,生成二元列的列表 In[69]: binary_cols = college_n.columns[criteria].tolist()         binary_colsOut[69]: ['HBCU', 'MENONLY', 'WOMENONLY', 'RELAFFIL', 'DISTANCEONLY', 'CURROPER']
# 用drop方法删除这些列 In[70]: college_n2 = college_n.drop(labels=binary_cols, axis='columns')         college_n2.head()Out[70]:
img_2358ba5d26d74742b798e2f81071f904.png
# 用idxmax方法选出每列最大值的行索引标签 In[71]: max_cols = college_n2.idxmax()         max_colsOut[71]: SATVRMID                      California Institute of Technology         SATMTMID                      California Institute of Technology         UGDS                               University of Phoenix-Arizona         UGDS_WHITE                Mr Leon's School of Hair Design-Moscow                                                  ...                             PCTFLOAN                                  ABC Beauty College Inc         UG25ABV                           Dongguk University-Los Angeles         MD_EARN_WNE_P10                     Medical College of Wisconsin         GRAD_DEBT_MDN_SUPP    Southwest University of Visual Arts-Tucson         Length: 18, dtype: object
# 用unique()方法选出所有不重复的列名 In[72]: unique_max_cols = max_cols.unique()         unique_max_cols[:5]Out[72]: array(['California Institute of Technology',                'University of Phoenix-Arizona',                "Mr Leon's School of Hair Design-Moscow",                'Velvatex College of Beauty Culture',                'Thunderbird School of Global Management'], dtype=object)
# 用max_cols选出只包含最大值的行,用style的highlight_max()高亮 In[73]: college_n2.loc[unique_max_cols].style.highlight_max()Out[73]:
img_825565b8782b6427f476968e88be1fc1.png

更多

# 用axis参数可以高亮每行的最大值 In[74]: college = pd.read_csv('data/college.csv', index_col='INSTNM')         college_ugds = college.filter(like='UGDS_').head()         college_ugds.style.highlight_max(axis='columns')Out[74]:
img_a68277d74723e72f6f39cc74ab144c2d.png
In[75]: pd.Timedelta(1, unit='Y')Out[75]: Timedelta('365 days 05:49:12')

7. 用链式方法重现idxmax

# 和前面一样,只选出数值列 In[76]: college = pd.read_csv('data/college.csv', index_col='INSTNM')         cols = ['MD_EARN_WNE_P10', 'GRAD_DEBT_MDN_SUPP']         for col in cols:             college[col] = pd.to_numeric(college[col], errors='coerce')         college_n = college.select_dtypes(include=[np.number])         criteria = college_n.nunique() == 2         binary_cols = college_n.columns[criteria].tolist()         college_n = college_n.drop(labels=binary_cols, axis='columns') In[77]: college_n.max().head()Out[77]: SATVRMID         765.0         SATMTMID         785.0         UGDS          151558.0         UGDS_WHITE         1.0         UGDS_BLACK         1.0         dtype: float64
# college_n.max()可以选出每列的最大值,用eq方法比较DataFrame的每个值和该列的最大值 In[78]: college_n.eq(college_n.max()).head()Out[78]:
img_65eed7e8b940c3dad5f81844b08f9773.png
# 用any方法,选出至少包含一个True值的行 In[79]: has_row_max = college_n.eq(college_n.max()).any(axis='columns')         has_row_max.head()Out[79]: INSTNM         Alabama A & M University               False         University of Alabama at Birmingham    False         Amridge University                     False         University of Alabama in Huntsville    False         Alabama State University               False         dtype: bool
# 因为只有18列,has_row_max最多只能有18个True,来看下实际共有多少个 In[80]: college_n.shapeOut[80]: (7535, 18) In[81]: has_row_max.sum()Out[81]: 401
# 结果很奇怪,这是因为许多百分比的列的最大值是1。转而使用cumsum()累积求和 In[82]: has_row_max.sum() In[83]: college_n.eq(college_n.max()).cumsum()Out[83]:
img_dad044c53a2ff0cd65122e7597083aa1.png
# 一些列只有一个最大值,比如SATVRMID和SATMTMID,UGDS_WHITE列却有许多最大值。有109所学校的学生100%是白人。如果再使用一次cunsum,1在每列中就只出现一次,而且会是最大值首次出现的位置:>>> college_n.eq(college_n.max()).cumsum().cumsum()
img_3ba69b96b4c5aa8284ac25b1980ca282.png
# 现在就可以用eq方法去和1进行比较,然后用any方法,选出所有至少包含一个True值的行 In[84]: has_row_max2 = college_n.eq(college_n.max())\                                 .cumsum()\                                 .cumsum()\                                 .eq(1)\                                 .any(axis='columns')         has_row_max2.head()Out[84]: INSTNM         Alabama A & M University               False         University of Alabama at Birmingham    False         Amridge University                     False         University of Alabama in Huntsville    False         Alabama State University               False         dtype: bool
# 查看有多少True值 In[85]: has_row_max2.sum()Out[85]: 16
# 直接通过布尔索引选出这些学校 In[86]: idxmax_cols = has_row_max2[has_row_max2].index         idxmax_colsOut[86]: Index(['Thunderbird School of Global Management',                'Southwest University of Visual Arts-Tucson', 'ABC Beauty College Inc',                'Velvatex College of Beauty Culture',                'California Institute of Technology',                'Le Cordon Bleu College of Culinary Arts-San Francisco',                'MTI Business College Inc', 'Dongguk University-Los Angeles',                'Mr Leon's School of Hair Design-Moscow',                'Haskell Indian Nations University', 'LIU Brentwood',                'Medical College of Wisconsin', 'Palau Community College',                'California University of Management and Sciences',                'Cosmopolitan Beauty and Tech School', 'University of Phoenix-Arizona'],                dtype='object', name='INSTNM')
# 和idxmax方法的结果比较 In[87]: set(college_n.idxmax().unique()) == set(idxmax_cols)Out[87]: True

更多

# 耗时比较 In[88]: %timeit college_n.idxmax().values         1.11 ms ± 50.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)Out[89]: %timeit college_n.eq(college_n.max())\                                       .cumsum()\                                       .cumsum()\                                       .eq(1)\                                       .any(axis='columns')\                                       [lambda x: x].index         5.26 ms ± 35.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

8. 找到最常见的最大值

# 读取college,过滤出只包含本科生种族比例信息的列 In[90]: pd.options.display.max_rows= 40 In[91]: college = pd.read_csv('data/college.csv', index_col='INSTNM')         college_ugds = college.filter(like='UGDS_')         college_ugds.head()Out[91]:
img_1667af9480c7247b0b76157181419775.png
# 用idxmax方法选出每行种族比例最高的列名 In[92]: highest_percentage_race = college_ugds.idxmax(axis='columns')         highest_percentage_race.head()Out[92]: INSTNM         Alabama A & M University               UGDS_BLACK         University of Alabama at Birmingham    UGDS_WHITE         Amridge University                     UGDS_BLACK         University of Alabama in Huntsville    UGDS_WHITE         Alabama State University               UGDS_BLACK         dtype: object
# 用value_counts,查看最大值的分布 In[93]: highest_percentage_race.value_counts(normalize=True)Out[93]: UGDS_WHITE    0.670352         UGDS_BLACK    0.151586         UGDS_HISP     0.129473         UGDS_UNKN     0.023422         UGDS_ASIAN    0.012074         UGDS_AIAN     0.006110         UGDS_NRA      0.004073         UGDS_NHPI     0.001746         UGDS_2MOR     0.001164         dtype: float64

更多

# 对于黑人比例最高的学校,排名第二的种族的分布情况 In[94]: college_black = college_ugds[highest_percentage_race == 'UGDS_BLACK']         college_black = college_black.drop('UGDS_BLACK', axis='columns')         college_black.idxmax(axis='columns').value_counts(normalize=True)Out[94]: UGDS_WHITE    0.670352         UGDS_BLACK    0.151586         UGDS_HISP     0.129473         UGDS_UNKN     0.023422         UGDS_ASIAN    0.012074         UGDS_AIAN     0.006110         UGDS_NRA      0.004073         UGDS_NHPI     0.001746         UGDS_2MOR     0.001164         dtype: float64

第06章 索引对齐
第09章 合并Pandas对象
第10章 时间序列分析
第11章 用Matplotlib、Pandas、Seaborn进行可视化


转载地址:http://khhal.baihongyu.com/

你可能感兴趣的文章
Nodejs的第一个页面
查看>>
实习第2天
查看>>
采用aVCS实现配置自动同步
查看>>
JAVA面试算法题4
查看>>
科技公司Vs.传统汽车厂商:谁做自动驾驶更有优势?
查看>>
java.net.BindException: Cannot assign requested address
查看>>
WinAPI 编写基本服务程序
查看>>
Android SDK中 tools 目录下的工具介绍
查看>>
J2EE下的oracle数据库备份方法
查看>>
网络管理技巧进阶:七招鲜
查看>>
PostgreSQL 11 preview - 分区智能并行JOIN (类似MPP架构,性能暴增)
查看>>
SCVMM2012R2 高可用性安装及配置
查看>>
关于邮件无法发送的问题
查看>>
Greenplum roaring bitmap与业务场景 (类阿里云RDS PG varbitx, 应用于海量用户 实时画像和圈选、透视)...
查看>>
深入研究Java类加载机制
查看>>
Server 2008 R2 AD RMS完整部署:RMS部署篇
查看>>
通过binlog日志文件恢复单表【小技巧】
查看>>
开荒之作《互联网运营智慧》一书即将付梓
查看>>
Python中单引号、双引号和三引号的区别
查看>>
DHCP中继代理
查看>>